CLIMATE CHANGE AND AGRICULTURE:

Cows, Corn, and Crap

Elisabeth Haub School of Law at Pace University Peter H. Lehner October 2023

PETER LEHNER

INDUSTRIAL AGRICULTURE PRODUCES A VAST AMOUNT OF INEXPENSIVE FOOD

- **430 billion pounds** of food produced annually
 - **3,683 calories** /person / day (~2,200 recommended)
- **20 mm** bales of cotton, 20 mm pounds of wool; 14 bb gallons of biofuel
- 20% of food produced exported; 15% imported; 40% is wasted
- Americans are paying one third less for their food than in 1980
- Farmers receive 7.8 ¢/ food \$

INDUSTRIAL AGRICULTURE, LAND & LABOR: INCREASING CONCENTRATION AND DISPARITY

Note: The figure shows the average sales share for each farm size category in each Census year. The solid lines are estimated linear trends.

- >70% cropland acres are monoculture; 8% of farms control 40% of farmland
- **6%** of farms produce **90%** of meat, dairy, poultry
- 98% of farmland owned by whites; 60% of farm labor people of color
- Under 2% of US labor in agriculture (4 million)

AGRICULTURE DRIVES U.S. LAND AND WATER USE

- 62% of land use in continental U.S. is agricultural
- 391 million acres of crops and 798 million acres of grazing land
 - Only 20% of land is used for food we directly eat
- 80% of water use

INDUSTRIAL AGRICULTURE DRIVES ABOUT ONE THIRD OF CLIMATE CHANGE

* Does not include GHG from land conversion, foregone sequestration; additional food system emissions from processing, refrigeration, cooking, transport, etc.

NITROUS OXIDE

- ~285x stronger > CO2
 - Excess fertilizer, animal manure

SOIL CARBON

- Forest and grassland conversion, tillage
- 7.8M+ acres converted from 2008-2012
- Continuing impact of prior converted land largely corn and cows

METHANE

- 85x stronger > CO2
- Cattle belches
- Animal manure
- Rice, food waste rotting in landfills

CARBON DIOXIDE

- Fertilizer and pesticide manufacture
 - On-farm energy and electricity
- Food processing, distribution, preparation

CLIMATE CHANGE HARMS AGRICULTURE

EXTREME WEATHER

- Hurricanes and storms increase in frequency and severity
 - Hurricane Maria: \$780M in ag losses
 - CAFO overflows

PESTS, WEEDS, DISEASES

- Better living conditions for pests
- Invasive species expand and spread
- Reduced resilience to disease outbreak
 - Reduced nutritional content of foods

FLOODS AND DROUGHTS

- Irregular and extreme precipitation events more frequent and severe
 - 2016 CA Drought: \$603M in ag losses
- 2019 Midwest floods: 5-10M bushels corn and soy rotted; 19M acres left unplanted

HEAT WAVES AND WILDFIRES

- More frequent and severe
- Lead to yield declines
- Dangerous working conditions

INDUSTRIAL AGRICULTURE IMPACTS ON THE ENVIRONMENT AND PUBLIC HEALTH

PUBLIC HEALTH

- Diet-related disease
 over \$1 trillion / year
- 70% American adults overweight or obese
- Major source of lead
- Antibiotics in feed -> antibiotic resistance

WATER POLLUTION

- Water pollution & soil erosion >\$200B/year
- E.g. Gulf dead zone; Toledo drinking water
 - **50 million** Americans drink water contaminated with agricultural chemicals

WILDLIFE CONFLICT

- Livestock grazing v. wolves & bears
- Loss of habitat up to **7.8 million acres** converted to cropland between 2007-2012

TOXIC CHEMICAL EXPOSURE

- Pesticide residues found on 85% of tested foods
- 17,000 people die each year from ag air pollution

CURRENT AGRICULTURE SYSTEM IS NOT THE ONLY OPTION

- Current system is profoundly shaped by policy (especially Farm Bill; environmental law exemptions)
- Industrial, chemical-dependent monoculture systems are not necessary to "feed the world"
 - Organic and agro-ecological practices are <u>highly productive</u>
- The "true cost" of food is at least triple the market price when include environmental and health costs

BETTER PRACTICES REDUCE CLIMATE IMPACTS, CHEMICAL USE, POLLUTION

Annual crop root mass (left) vs. perennial crop root mass (right). *Greater root mass improves drought/flood resilience and nutrient uptake.*

- Organic and agroecological practices can provide ample nutritious food while reducing fertilizer/pesticide needs and costs
- These proven practices include:
 - Perennial crops (see image)
 - Precision fertilizer management
 - Crop rotations (different yearly crops)
 - Cover crops (avoiding winter bare ground)
 - No-till, reduced till; prairie strips
 - Management intensive grazing
 - Agroforestry & silvopasture (trees)
 - Dry manure management
 - Organic fertilizer, compost, biochar
 - And many new opportunities since this area has been starved for R&D. E.g. Feed additives, climate-focused GM, remote sensing, drones

WHY THIS MATTERS: HEALTHY SOIL & GHG REDUCTION PRACTICES CAN MAKE AGRICULTURE CARBON-NEUTRAL

Based on estimates from USDA NRCS COMETS planner.

POLICY GOALS TO ACCELERATE CLIMATE-FRIENDLY AGRICULTURE

• The Farm Bill and USDA Programs

- Better target conservation programs to practices with climate change mitigation and resilience potential and away from practices with negative impacts
- Ensure Inflation Reduction Act funds (\$20 billion) spent well
- Ensure Climate-Smart Commodity Program well focused and transparent
- Increase funding for **R&D** into climate-friendly practices, education, & outreach

• Energy policy and laws

- Fix renewable fuel standard
- Encourage **on-farm renewable energy** and energy efficiency
- Pollution and land management statutes
 - Improve models and monitoring of air and water pollution; stricter limits
 - Eliminate barriers and create incentives for management intensive grazing
 - Increase information sharing and data availability
 - Prioritize climate beneficial practices in other water and air quality programs (e.g. nonpoint source)

DIETARY CHANGE WILL BE NECESSARY

Note: Greenhouse gas emissions are given as global average values based on data across 38,700 commercially viable farms in 119 countries. Data source: Poore and Nemecek (2018), Reducing food's environmental impacts through producers and consumers. Science, Images sourced from the Noun Project. OurWorldinData.org - Research and data to make progress against the world's largest problems.

IT'S NOT JUST *HOW* WE GROW FOOD, BUT *WHAT* WE GROW

- Diet drives both climate change and land-use change
 - If the entire world ate a Western diet, we would need another Canada of cropland

THANK YOU AND QUESTIONS

